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We investigate localization of noninteracting particles with spins higher than 1
2 in a two-dimensional random

potential in presence of spin-orbit coupling. We consider an integer spin �s=1� and a half-integer spin �s
= 3

2 � belonging to orthogonal and symplectic symmetry classes, respectively. We show that particles with
integer spin are localized and those with half-integer spin exhibit Anderson transition. The transition belongs to
universality class of conventional symplectic model for spin-1

2 particles.
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I. INTRODUCTION

Symplectic class has a rich physical content among the
symmetry classes in the Wigner-Dyson classification of ran-
dom matrices. Spin-orbit scattering provides the common
physical realization of this class. From the symmetry point of
view such system is invariant under time reversal �T� but not
under spin rotation �S�. For a system with noninteger spin
we have T2=−1 and the wave function �WF� has a rotational
periodicity of 4� therefore in average, time-reversed paths in
the multiple-scattering picture interfere destructively.1 As a
result of the destructive interference, conductivity is en-
hanced and we have weak antilocalization rather than weak
localization. This is one of the mechanisms of criticality in
two spatial dimensions which is specific for symplectic class
in the framework of early Wigner-Dyson classification.

Several other realizations of symplectic class have been
identified which exhibit distinct universal behavior. For this
class the homotopy group of � model manifold is nontrivial
so the � model action allows for inclusion of a topological �
term �see Ref. 2 for a recent review�. Such topological term
is responsible for quantum-Hall criticality in the unitary
class. Spin-orbit coupling have provided similar topological
phases in the T-invariant systems which has been the subject
of an intense activity in recent years.3 Remarkably, quantum
spin Hall �QSH� which is a novel phase induced by Z2 topo-
logical term in the symplectic ensemble. A new universality
class of Anderson transition emerges in presence of this to-
pological structure between the metallic and QSH phases.4 It
should be mentioned however that the corresponding
Chalker-Coddington network model which allows to have
odd number of Kramers doublets �i.e., nontrivial topology�
does not capture this critical behavior.5 Another realization of
symplectic class with nontrivial topology appears in a two-
dimensional system of Dirac fermions6,7 which yields a un-
conventional scaling � function. Two different scenarios are
proposed one of which predicts an extra attractive fixed point
in the strong-coupling limit6 and the other one implies on
delocalization of all states even in strong disorder limit.7

Based on semiclassical arguments it is also shown that spin-
orbit scattering may induce a novel universality class in the
regime of integer quantum-Hall effect.8 Whereas in the uni-
tary ensemble, presence or absence of spin-rotational invari-
ance does not change symmetry class. These examples imply
the fact that in spite of a complete mathematical classifica-
tion of symmetry classes, universality classes are not recog-
nized so far.

Thanks to new advances in designing periodic potentials
by standing waves of light, many experiments which are not
possible to arrange for electrons can be simulated with quan-
tum motion of cold atoms. Especially it just recently became
possible to do careful experiments on localization of non-
interacting matter waves. Even more fascinating games
could be done by changing the polarization of the beams. So
the internal degrees of freedom of the atom can be coupled to
the momentum of the beam and produce an effective spin-
orbit like term in the Hamiltonian. Once this could be done,
one can search for new universalities and topological prop-
erties of WFs with higher tunability.9

A natural generalization in this direction is to consider
atoms with higher number of internal degrees of freedom or
particles with higher spins. Here we want to address whether
higher spins in spin-orbit interaction can change the univer-
sality class of transition or not. We use the transfer-matrix
method to calculate the localization length and then extract
the critical exponents from finite-size scaling analysis. On
the other hand multifractal spectrum of critical WFs are of
universal properties hence useful to describe the transition.
We will examine multifractal properties of higher spin model
in comparison with spin-1

2 case.

II. MODEL

Several models have been proposed to study Anderson
localization problem in presence of spin-orbit scattering.10

Regardless of microscopic details, they present the same uni-
versal features. Spin-relaxation length is an important irrel-
evant length scale in these systems. SU�2� model11 has
smaller spin-relaxation length since spin-rotation operators
in each link of its lattice are uniformly distributed. As a
result it needs small correction to scaling. Having small size
effects this model provides more accurate calculation of criti-
cal exponents. Here we use the generalization of this model
to describe particles with higher spins. We start with the
following Hamiltonian which is proposed for spin-1

2 par-
ticles.

H = �
i�

�ici�
† ci� − V �

�ij����

R���
ij ci�

† cj��. �1�

Here we will let the hopping matrices act on spinors of
higher rank. So spin indexes �� ,��� take the values �s ,s
−1, . . . ,−s� for particles with spin s. Latin indices denote
nearest-neighbor sites on square lattice. Random on-site po-
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tential �i is distributed uniformly in the interval �− W
2 , W

2 �.
Energy scale will be set by V=1.

Rij’s are �2s+1�-dimensional irreducible representa-
tion of SU�2� group. In terms of Euler angles they
have the following description R���

ij =D���
s ��ij ,�ij ,�ij�

=ei���ij+���ij�d���
s ��ij�, where d���

s ��ij�= �s��e−i�ijSy/��s��� is
the matrix element of rotation operator around y axis. Angles
�, �, and � are distributed randomly in different links of
lattice such that rotation matrices Rij have uniform distribu-
tion with respect to the Haar measure on SU�2� group.
Namely, � and � are distributed uniformly in the interval
�0,2�� and � is chosen from interval �0, �

2 � with distribution
P���=sin�2��.

III. LEVEL STATISTICS

Regarding broken spin-rotational symmetry of Hamil-
tonian �1�, for integer spins it does belong to the orthogonal
ensemble. Only for half-integer spins it falls into the sym-
plectic ensemble. This is known from Wigner-Dyson classi-
fication of random matrices.12 An essential difference in the
spectrum of two cases is Kramers degeneracy of energy lev-
els of later which is robust against disorder.

In this section we demonstrate above-mentioned relation
with the Wigner-Dyson symmetry classes numerically. The
simplest quantity which can be used to determine the statis-
tical properties of energy levels is the nearest level-spacing
distribution. To have comparable results with the distribu-
tions of random matrix theory we look at the distribution of
	n=

En+1−En

�En+1−En� which is unfolded level spacing. Denominator is
the ensemble average of level spacing which is proportional
to inverse density of states �DOS�. So unfolding procedure is
needed when the DOS has large variations within the energy
range under consideration. Obviously first-order moment of
distribution function P�	� is fixed, i.e., �	�=	0


	P�	�d	=1
for unfolded spectrum. We determine the distribution func-
tion P�	� for two s=1 and s= 3

2 cases in the metallic regime
after removing the degeneracy in the later case. By metallic
regime we mean weak disorder for which WFs have large
overlap and comparable localization length with the system
size. We find good agreement with GOE ��=1� for s=1 and
GSE ��=4� for s= 3

2 cases. The results which are shown in
Fig. 1 are obtained by diagonalizing 103 Hamiltonians of
lattice size 202 and disorder width W=0. For nonzero but
small values of W also we obtain the same results. In the
strong disorder limit which all states �for both cases� tend to
be localized one naturally expect to see Poisson distribution.
Difference between two cases would reveal in the intermedi-
ate disorder strength.

IV. TRANSFER MATRIX

To find a precise insight into the localization properties of
these models and to explain the differences in the thermody-
namic limit we implement a finite-size scaling analysis. In
the following we will study renormalized localization length
�RLL�, �=

�m

M , on the quasi-one-dimensional geometry,
where �m is the localization length on strip. We utilize

transfer-matrix method13 to calculate the minimal Lyapunov
exponent, inverse of which is the largest length scale of spa-
tial extension of wave function. Dimension of transfer matri-
ces for spin s is N=2�2s+1�M with M being the system size
in the transverse direction. Lyapunov exponents appear in
�−� ,�� pairs for integer spin case due to symmetry of trans-
fer matrices. Furthermore for half-integer spin case each �
appears twice due to Kramers degeneracy. According to
these symmetries we need to evolve N

2 = �2s+1�M vectors of
length N to calculate minimum positive �. Components of
vectors are V�2s+1�j+m=�

n,j, V�2s+1��j+M�+m=�
n−1,j, where n

is the number of layer �here a chain of length M�,
j=0, . . . ,M −1 is the coordinate in the transverse direction
and m takes values 1 , . . . , �2s+1� corresponding to
�=s ,s−1, . . . ,−s, respectively. Gram-Schmidt orthogonal-
ization is implemented after each four steps.

Let us start with spin-1 particle and zero on-site disorder
�W=0�. In the left panel of Fig. 2 we observe that � de-
creases by increasing the size M in the whole energy range.
We can conclude that states are localized even for zero on-
site disorder. In other words the randomness in spin rotation
in passing through different links is enough to localize the
particle. Results for nonzero on-site disorder are the same
and we will not present them here. This is what we expect
for a system in orthogonal �AI� symmetry class. That break-
ing of spin-rotational symmetry in a T-invariant system with
integer spin neither changes symmetry class nor develops
delocalized states. We should comment on the additional
symmetry which Hamiltonian �1� may have in absence of
on-site disorder. Using periodic boundary conditions in the
transverse direction and even M the lattice will be a bipartite
lattice which is shown to have anomalies at zero energy.14–16

We can see in Fig. 2 that at the center of energy band, �
remains almost constant for different sizes which indicates a
critical state at E=0. Away from the band center � decreases
more rapidly by increasing M, which gradually leads in cre-
ation of a cusp at E=0. For an odd number of channels �M�
with free boundary conditions in transverse direction particu-
larly �→
 for this zero mode. This is proved15 analytically

FIG. 1. �Color online� Level-spacing distribution function for
disorder strength W=0. Spin 1 �GOE�, spin 3

2 �GSE� and corre-
sponding Wigner-Dyson distributions with �=1,4, respectively.
Inset: log-log plot which shows power-law behavior at 	→0. Line
segments represent functions proportional to 	 and 	4.
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for coupled one-dimensional chains with �=1,2. This criti-
cal state will be ruined by addition of small on-site disorder
which breaks sublattice symmetry of Hamiltonian. Unlike
the spin-1 particle the case with spin 3

2 possesses a band of
extended states for certain values of on-site disorder strength
W. As an example, results of � for spin-3

2 particle with dis-
order strength W=1 and sizes M =8,16,24 are shown in Fig.
2. The result for spin-1

2 particle is also included for compari-
son at the same on-site disorder strength. Relative errors of
data are 1% for M �8, 0.8% for M =8, and 0.7% for spin-1

2
case. To reach this accuracy the length of strips is increased
up to 1.3,1.6,2.4,3.6�106 for spin 1 with M =8,16,24,32,
1.4,1.8,2.8,3.8�106 for spin 3

2 with M =8,16,24,32, re-
spectively, and 0.9�106 for spin-1

2 case. There can be seen a
mobility edge at E
3.4 where order of symbols is reversed.
As usual the states in the band edge are localized and the
midband states are extended. The finite band of the bulk
extended states make the true metallic phase happen in the
symplectic class. By increasing the disorder strength the
band of extended states gets narrower and gradually col-
lapses at a critical value Wc.

It is worthwhile to compare RLL of spin-3
2 and spin-1

2
cases more closely. The ratio of RLLs vs W of two models is
plotted in Fig. 3 for single energy E=2 and M =8. The en-
ergy is chosen away from the band center and edges to en-
sure the DOS has considerable value in both models. In a
range of weak disorder strengths �W�4�, the ratio is nearly
constant and equals 2. This is where the hopping term is
dominant or comparable with on-site term. In strong disorder
limit �W�1� the hopping term is negligible, therefore spin
degrees of freedom would not have considerable effect on
localization length. Thus one expects the same RLL for both
cases. That is what which can be seen also in Fig. 3 at large
W. In the next sections we will discuss critical exponents
characterizing the universality class of the transition.

V. SCALING AND CRITICAL INDICES

Dimensionless quantity � is one of scaling variables
which is frequently used for numerical analysis. On the basis

of one-parameter scaling hypothesis, it can be written in the
following form

��E,W,M� = f� M

��W,E�� , �2�

where ��W ,E� is the localization length �insulating side� or
the correlation length �metallic side� of infinite system. It is
not the only length scale in this system. We will encounter
deviations from scaling, Eq. �2�, when other �irrelevant�
length scales are comparable with correlation length. Near
the mobility edge, � diverges as ��E−Ec�−� with critical
exponent �. The value of � at critical point is also a univer-
sal constant and independent of W.

To calculate the critical exponent we take few sets of data
�� vs E� close to the mobility edge for M =8,16,24,32.
There are two ways of fitting the data to scaling form �2�.
Since function f�x� is unknown we can either use a Taylor
expansion and then obtain the coefficients by fitting, or take
one set as f�x� �by interpolating�, define a suitable residual of
curves and minimize it by adjusting critical indices. Let the
values of � and E in the ith set �corresponding to size Mi� be
denoted by �ij and Eij.

A possible definition of residual follows17

R =
1

N
�

k
�
i�k

�
j

���ij − �k�M1/��Eij − Ec��� , �3�

where �k�x� is obtained by transforming the horizontal axis
of �kj such as Ekj→Mk

1/��Ekj −Ec� and simple linear interpo-
lation. The prime on the third sum denotes summation over
j’s which are in the range of definition of �k�x� and N is the
total number of such points. For each k one set is taken as the
reference curve and the other curves are supposed to collapse
on it by rescaling. Function R reaches its minimum value
�0.01� at �=2.81�0.18 and Ec=3.362�0.014. Error bars
are roughly estimated from width of minimum by using ap-
proximate expressions given in Ref. 17. Reasonable data col-
lapse is obtained for these values of critical parameters �inset
of Fig. 4�.

We tabulate the values of critical exponents in Table I.
The exponents of spin-1

2 system are also given for compari-
son. In spite of relatively larger error bars in the spin-3

2 case,

FIG. 2. �Color online� Left: RLL as a function of energy of
spin-1 particle with zero on-site disorder �W=0�, right: spin 3

2 and
spin 1

2 �for single size M =8� with W=1. Inset shows a zoom in
around the crossing point.

FIG. 3. Ratio of RLLs vs W of spin-3
2 and spin-1

2 particles for
single energy E=2 and M =8.
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estimated exponent is close to that of spin-1
2 particle. Our

speculation is that two models belong the same universality
class.

VI. MULTIFRACTAL SPECTRUM

Fluctuations of critical WFs exhibit universal features. So
multifractal exponents which describe the distribution of
WFs can be used to characterize phase transition. Moreover
multifractality leads to anomalous diffusion of wave packets
near the mobility edge. This is reflected in power-law decay
of return probability which is governed by one of those mul-
tifractal exponents. We want to compare the multifractal
spectrum of spin-3

2 and spin-1
2 particles at the mobility edge.

Scaling properties of multifractal measure are encoded in the
f��� spectrum. Here we use the direct method of Chhabra
and Jensen18,19 to calculate this function. By using the box
probabilities p�l�=	��l�d

2r���r��2, with ��l� being a box of
linear dimension l, and one-parameter families of normalized
measures �i�q , l�= pi

q�l� /�ipi
q�l� for each value of q, corre-

sponding values of ��q� and f̃�q�= f���q�� can be calculated
from

��q� =

�
i

�i ln pi

ln�l/L�
, f̃�q� =

�
i

�i ln �i

ln�l/L�
. �4�

In practice, linear fit to numerators vs ln�l /L� can be used to

calculate � and f̃ as the slope of fitted line. This method
requires large system sizes to avoid finite-size effect.

These exponents are related to correlation dimension ��q�
by a Legendre transform ��q�=d��q� /dq, f���q��=��q�q
−��q� and generalized dimension D�q� is defined through
��q�= �q−1�D�q�.

The singularity spectrum for single critical states of
spin-1

2 and spin-3
2 particles are shown in Fig. 4. Correspond-

ing lattice sizes are 15002 and 8002, respectively. The eigen-
states are obtained via Lanczos algorithm. Parameters of
former is picked up from phase diagram obtained in Ref. 11
�E=1, W=5.952� and the spin-3

2 case has �E=3.362, W
=1�. Even thought two states are distant in parameter space,
their singularity spectrum are the same within the error bars.
Especially we obtain �for WFs in Fig. 4� �0

1/2

=2.174�0.005 and D1/2�2�=1.66�0.04. These exponents
and also whole spectrum are compatible with previous cal-
culations based on inverse participation ratio analysis.20,21

For spin-3
2 case �0

3/2=2.164�0.009 and D3/2�2�
=1.71�0.05, where �0=��0�. Error bars are standard devia-
tion of slopes in linear fitting �Fig. 5�. It should be noted that,
obtained results depend weakly on realization of disorder so
ensemble averaging will not change them significantly.

VII. SUMMARY AND FUTURE WORK

Localization of particles with spin 1 and 3
2 in the presence

of spin-orbit interaction is studied numerically in the SU�2�
model. In summary, spin-1 particle belongs to orthogonal
symmetry class and is always localized. Spin-3

2 case exhibits
a transition. Implication of finite-size scaling results and
multifractal analysis on critical WFs of this model is that the
transition belongs to the conventional universality in sym-
plectic class. An interesting direction of future work would
be investigation of spin dependence of localization length
�see Fig. 3� within the Dorokhov-Mello-Pereyra-Kumar for-
malism for disordered wires.
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FIG. 4. �Color online� RLL of spin-3
2 particle for W=1 and sizes

M =8,16,24,32. Inset: after rescaling.

TABLE I. Critical exponents: results of spin-1
2 case are taken

from Ref. 11.

Model � �c

Spin 1
2 2.73�0.02 1.844�0.001

Spin 3
2 2.81�0.18 1.77�0.07

FIG. 5. �Color online� Singularity spectrum of critical WFs of
spin-1

2 and spin-3
2 particles with lattice sizes 15002 and 8002, re-

spectively. Line f���=� is tangent to f��� curve as it should be.
Horizontal line shows maximum of f��� which is dimension of
support �d=2�. The data from Ref. 21 are included for comparison.
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